
MQ Light Documentation
Release 1.0.2016120100

IBM

Jun 20, 2017

Contents

1 MQ Light Client API 3

2 Samples 9

3 Feedback 13
3.1 Reporting bugs . 13

4 Release notes 15
4.1 1.0.2016120100 . 15
4.2 1.0.2015020201b1 . 15

5 Indices and tables 17

Python Module Index 19

i

ii

MQ Light Documentation, Release 1.0.2016120100

MQ Light is designed to allow applications to exchange discrete pieces of information in the form of messages. This
might sound a lot like TCP/IP networking, and MQ Light does use TCP/IP under the covers, but MQ Light takes away
much of the complexity and provides a higher level set of abstractions to build your applications with.

This python module provides the high-level API by which you can interact with the MQ Light runtime.

See https://developer.ibm.com/messaging/mq-light/ for more details.

Contents 1

https://developer.ibm.com/messaging/mq-light/

MQ Light Documentation, Release 1.0.2016120100

2 Contents

CHAPTER 1

MQ Light Client API

class mqlight.Client(service, client_id=None, security_options=None, on_started=None,
on_state_changed=None, on_drain=None)

The Client class represents an MQLight client instance. Once created, the class will initiate connection to the
server.

Constructs and starts a new Client.

Parameters

• service (str, list of str or function) – takes one of three types to define
the address of the service to connect to. As a str it is a single URL connection. As
a [str, str, ...] it is a list of URL connections which are each tried in turn until
either a connection is successfully established, or all of the URLs have been tried. As
a function, which is invoked each time the Client wants to establish a connection. The
function prototype must be func(callback) and on completion must perform a call to
the callback function as callback(error, services). Where error indicates
a failure in generating the service or None to indicate success. The services can either
be a str or a [str , str, ...] containing list URLs to be attempted.

• client_id (str or None) – An identifier that is associated with this client. If none is
supplied then a random name will be generated. The identifier must be unique and should
two clients have the same identifier then the server will elect which client will be discon-
nected.

• security_options (dict) – A optional set of security options, see below for details

• on_started (function or None) – A function to be called when the Client as suc-
cessfully connected and reached the started state. This function prototype must be
func(client) where client is this instance.

• on_state_changed (function or None) – A function to be called when the client
connection changes state. This function prototype must be func(client, state,
err) where client is this instance, state one of started, starting, stopped, stopping,
retrying. err optional contains an error report that caused the state changed.

3

MQ Light Documentation, Release 1.0.2016120100

• on_drain (function) – A function to be called when a backlog of messages to be sent
have been cleared. The function prototype must be func(client), where client is
this instance.

Returns This Client’s instance.

Raises

• TypeError – if an argument was the incorrect type

• InvalidArgumentError – if an arguments was invalid.

Security options

•user (str) - the user reference when SASL is enabled

•password (str) - the password for the user when SASL is enabled.

•ssl_trust_certificate (str) - file path to the CA trust certificate

•ssl_client_certificate (str) - file path to the client certificate

•ssl_client_key (str)- file path to the client key

•ssl_client_key_passphrase (str)- the passphrase for client key

•ssl_verify_name (True, False) - True(default) will reject the connection of the supplied server certificate
does not match the expected server host

get_id()

Returns The client id

get_service()

Returns The service if connected otherwise None

get_state()

Returns The state of the client

States

•started - client is connected to the server and ready to process messages.

•starting - client is attempting to connect to the server following a stop event.

•stopped - client is stopped and not connected to the server. This can occur following a user request or
a non-recovery connection error

•stopping - occurs before stopped state and is closing any current connections.

•retrying - attempting to connect to the server following a recoverable error. Previous states would be
starting or started

is_stopped()

Returns True if the Client is in the stopped or stopping state, otherwise False

send(topic, data, options=None, on_sent=None)
Sends a message to the MQLight service.

Parameters

• topic (str) – The topic of the message to be sent to.

• data (str or bytearray.) – Body of the message. A str will be send as Text and
bytearray will be sent as Binary.

4 Chapter 1. MQ Light Client API

MQ Light Documentation, Release 1.0.2016120100

• options (dict) – A set of attributes for the message to be sent, see details below.

• on_sent (function) – A function to called when the message has been sent. This
function prototype must be func(client, err, topic, data, options)
where client is the instance that has completed the send, err contains an error message
or None if was successfully sent topic is the topic that the message was sent to, data
is the body of the message sent, options are the message attributes (see below).

Returns True if this message was either sent or is the next to be sent or False if the message
was queued in user memory, because either there was a backlog of messages, or the client
was not in a started state.

Raises

• TypeError – if an argument had an incorrect type.

• RangeError – if an argument was out of range

• InvalidArgumentError – if an argument was invalid

• StoppedError – if the client is stopped.

Message attributes

•qos specifies the quality of service. This can be 1 for at-least-once, where the client waits to receive
confirmation of the server received the message before issuing a on_sent callback, or 0 for at-most-
once, where there is no confirmation and no callback.

•ttl specifies the time-to-live of the message in milli-seconds. This is how long the message will
persist if sent to a topic that has a subscription that hasn’t expired.

start(on_started=None)
Will initiate a request to reconnect to the MQ Light service following a stop request.

Parameters on_started (function or None) – A function to be called when the Client
as successfully connected and reached the started state. This function prototype must be
func(client) where client is this instance.

Returns The Client instance.

Raises TypeError – if on_started argument is not a function.

state

Returns The state of the client

States

•started - client is connected to the server and ready to process messages.

•starting - client is attempting to connect to the server following a stop event.

•stopped - client is stopped and not connected to the server. This can occur following a user request or
a non-recovery connection error

•stopping - occurs before stopped state and is closing any current connections.

•retrying - attempting to connect to the server following a recoverable error. Previous states would be
starting or started

stop(on_stopped=None)
Initiates a stop request and disconnects the client from the server implicitly closing any subscriptions that
the client has open. Once the stop has completed the optional callback is performed.

5

MQ Light Documentation, Release 1.0.2016120100

Parameters on_stopped (function or None) – function to call when the connection
is closed. This function prototype must be func(client, err) where client is the
instance that has stopped and err will contain any error report that occurred during the stop
request

Returns The Client instance.

Raises

• TypeError – if the type of any of the arguments is incorrect.

• InvalidArgumentError – if any of the arguments are invalid.

• TypeError – if the on_stopped argument was not a function

subscribe(topic_pattern, share=None, options=None, on_subscribed=None, on_message=None)
Initiates a subscription with the server and issue message callbacks each time a message arrives for matches
topic pattern.

Parameters

• topic_pattern (str) – The topic to subscribe to.

• share (str or None) – The share name of the subscription.

• options (dict or None) – The subscription attributes , see note below

• on_subscribed (function on None) – A function to call when the subscription
has completed. This function prototype must be func(client, err, pattern, share)‘ where
client is the instance that has completed the subscription, err is None if the client
subscribed successfully otherwise contains an error message, pattern is the subscription
pattern and share is the share name.

• on_message (function on None) – function to call when a message is received.
This function prototype must be func(message_type, message, delivery)
where message_type is ‘message’ if a wellformed message has been received or ‘mal-
formed’ if a malformed message has been received message is the message contents and
delivery is the associate information for the message.

Returns The client instance.

Raises

• TypeError – if an argument has an incorrect type

• RangeError – if an argument is not within certain values.

• StoppedError – if the client is stopped

• InvalidArgumentError – if an argument is invalid.

Subscription Attributes

•qos - specifies the quality of service. This can be 0 for at-most-once and no confirmation is re-
quired and 1 for at-least-once where a confirmation is required. See auto_confirm attribute

•ttl - specifies the time-to-live of the subscription in milli-seconds. This is how long the subscription
will persist before being destroyed.

•credit - specifies the link credit: the number of messages that can be sent without confirmation before
the server stops delivering messages from the subscription. The default value is 1024 and a value 0
will block messages being received.

6 Chapter 1. MQ Light Client API

MQ Light Documentation, Release 1.0.2016120100

•auto_confirm - a value of True means the client will automatically confirm messages as they are
received and a value of False will require the caller to manaully confirm each message. This is
performed by the function call within the delivery object of the message

unsubscribe(topic_pattern, share=None, options=None, on_unsubscribed=None)
Initiates the disconnection of an existing subscription and thereby stop the flow of messages.

Parameters

• topic_pattern (str) – the topic_pattern that was supplied in the previous call to
subscribe.

• share (str or None) – the share that was supplied in the previous call to subscribe.

• options (dict or None) – Subscription attributes, see note below

• on_unsubscribed (function or None) – Indicates the unsubscribe request has
compeleted. This function prototype must be func(client, err, pattern,
share) where client is the instance that has completed the unsubscription, err
is None if the client unsubscribed successfully otherwise contains an error message,
pattern is the unsubscription pattern and share is the share name.

Returns The instance of the client.

Raises

• TypeError – if an argument has an incorrect type.

• RangeError – if an argument is not within certain values.

• StoppedError – if the client is stopped.

• InvalidArgumentError – if an argument has an invalid value.

Subscription attributes

•ttl - a value of 0 will result in the subscription being deleted within the server. A positive value will
indicate the time in milliseconds that existing and new message persist before they are removed.

exception mqlight.InvalidArgumentError
A MQLight error indicating that a given argument is incorrect and cannot be used. The underlying message will
highlight which argument is invalid.

exception mqlight.RangeError
A MQLight error indicating that a given argument is not within certain values. The underlying message will
highlight which argument is out of range.

exception mqlight.NetworkError
A MQLight error indicating that an attempted connection or an existing connection has failed. This will relate
to a network issue and the client will treat as recovery and attempt reconnection. The underlying message will
detail which server it has issue and the reason.

exception mqlight.ReplacedError
A MQLight error indicating that the server has detected two clients with the same client id are connected. This
is not supported and this client has been disconnected.

exception mqlight.SecurityError
A MQLight error indicating a failure to connect to the server due to a security issue. This may relate to the
SASL authentication, or SSL. The underlying message will detail which security issue it is and why has been
rejected.

exception mqlight.StoppedError
A MQLight error indicating a request such as Send, Subscribe and Unsubscribed has been requested while the
client is not in a started state.

7

MQ Light Documentation, Release 1.0.2016120100

exception mqlight.SubscribedError
A MQLight error indicating that the Subscription request is a duplicated subscription and is not supported. The
underlying message will detail the issue.

exception mqlight.UnsubscribedError
A MQLight error indicating that a request to unsubscribed has been rejected as no current subscription can be
found. The underlying message will detail the issue.

8 Chapter 1. MQ Light Client API

CHAPTER 2

Samples

To run the samples, navigate to the mqlight/samples/ folder.

Receiver Sample:

usage: recv.py [-h] [-s SERVICE] [-t TOPIC_PATTERN] [-i CLIENT_ID] [–destination-ttl DESTINA-
TION_TTL] [-n SHARE_NAME] [-f FILE] [-d DELAY] [–verbose] [-c FILE] [–client-certificate FILE]
[–client-key FILE] [–client-key-passphrase PASSPHRASE] [–no-verify-name SSL_VERIFY_NAME]

Connect to an MQ Light server and subscribe to the specified topic.

optional arguments:

-h, --help show this help message and exit

-s SERVICE, --service SERVICE service to connect to, for example:
amqp://user:password@host:5672 or amqps://host:5671 to use SSL/TLS
(default: None)

-t TOPIC_PATTERN, --topic-pattern TOPIC_PATTERN subscribe to receive messages
matching TOPIC_PATTERN (default: public)

-i CLIENT_ID, --id CLIENT_ID the ID to use when connecting to MQ Light (default:
send_[0-9a-f]{7})

--destination-ttl DESTINATION_TTL set destination time-to-live to DESTINATION_TTL
seconds (default: None)

-n SHARE_NAME, --share-name SHARE_NAME optionally, subscribe to a shared destina-
tion using SHARE_NAMEas the share name.

-f FILE, --file FILE write the payload of the next message received to FILE (overwriting previ-
ous file contents then end. (default is to print messages to stdout)

-d DELAY, --delay DELAY delays the confirmation for DELAY seconds each time a message
is received. (default: 0)

--verbose print additional information about each message.

ssl arguments:

9

MQ Light Documentation, Release 1.0.2016120100

-c FILE, --trust-certificate FILE use the certificate contained in FILE (in PEM or DER format)
to validate the identify of the server. The connection must be secured with
SSL/TLS (e.g. the service URL must start with “amqps://”)

--client-certificate FILE use the certificate contained in FILE (in PEM format) to supply the
identity of the client. The connection must be secured with SSL/TLS

--client-key FILE use the private key contained in FILE (in PEM format) for encrypting the
specified client certificate

--client-key-passphrase PASSPHRASE use PASSPHRASE to access the client private key

--no-verify-name SSL_VERIFY_NAME specify to not additionally check the server’s com-
mon name in the specified trust certificate matches the actual server’s DNS
name

Sender Sample:

usage: send.py [-h] [-s SERVICE] [-t TOPIC] [-i CLIENT_ID] [–message-ttl MESSAGE_TTL] [-d DELAY] [-r
REPEAT] [–sequence] [-f FILE] [–verbose] [-c FILE] [–client-certificate FILE] [–client-key FILE] [–client-
key-passphrase PASSPHRASE] [–no-verify-name SSL_VERIFY_NAME] [MESSAGE [MESSAGE ...]]

Send a message to a MQ Light server.

positional arguments: MESSAGE message to be sent (default: [’Hello world!’])

optional arguments:

-h, --help show this help message and exit

-s SERVICE, --service SERVICE service to connect to, for example:
amqp://user:password@host:5672 or amqps://host:5671 to use SSL/TLS
(default: None)

-t TOPIC, --topic TOPIC send messages to topic TOPIC (default: public)

-i CLIENT_ID, --id CLIENT_ID the ID to use when connecting to MQ Light (default:
send_[0-9a-f]{7})

--message-ttl MESSAGE_TTL set message time-to-live to MESSAGE_TTL seconds (default:
None)

-d DELAY, --delay DELAY add NUM seconds delay between each request (default: 0)

-r REPEAT, --repeat REPEAT send messages REPEAT times, if REPEAT <= 0 then repeat
forever (default: 1)

--sequence prefix a sequence number to the message payload, ignored for binary mes-
sages

-f FILE, --file FILE send FILE as binary data. Cannot be specified at the same time as MES-
SAGE

--verbose print additional information about each message.

ssl arguments:

-c FILE, --trust-certificate FILE use the certificate contained in FILE (in PEM or DER format)
to validate the identify of the server. The connection must be secured with
SSL/TLS (e.g. the service URL must start with “amqps://”)

--client-certificate FILE use the certificate contained in FILE (in PEM format) to supply the
identity of the client. The connection mustbe secured with SSL/TLS

10 Chapter 2. Samples

MQ Light Documentation, Release 1.0.2016120100

--client-key FILE use the private key contained in FILE (in PEM format) for encrypting the
specified client certificate

--client-key-passphrase PASSPHRASE use PASSPHRASE to access the client private key

--no-verify-name SSL_VERIFY_NAME specify to not additionally check the server’s com-
mon name in the specified trust certificate matches the actual server’s DNS
name

usage: uiworkout.py [-h] [-s SERVICE] [-v] [-c FILE] [–client-certificate FILE] [–client-key FILE] [–client-key-
passphrase PASSPHRASE] [–no-verify-name]

UIWorkout Sample:

Send and receives a number of messages to a MQ Light server.

optional arguments:

-h, --help show this help message and exit

-s SERVICE, --service SERVICE service to connect to, for example:
amqp://user:password@host:5672 or amqps://host:5671 to use SSL/TLS
(default: amqp://localhost)

-v, --verbose Increase the verbose output of the sample

ssl arguments:

-c FILE, --trust-certificate FILE use the certificate contained in FILE (in PEM or DER format)
to validate the identify of the server. The connection must be secured with
SSL/TLS (e.g. the service URL must start with “amqps://”)

--client-certificate FILE use the certificate contained in FILE (in PEM format) to supply the
identity of the client. The connection mustbe secured with SSL/TLS

--client-key FILE use the private key contained in FILE (in PEM format) for encrypting the
specified client certificate

--client-key-passphrase PASSPHRASE use PASSPHRASE to access the client private key

--no-verify-name specify to not additionally check the server’s common name in the specified
trust certificate matches the actual server’s DNS name

11

MQ Light Documentation, Release 1.0.2016120100

12 Chapter 2. Samples

CHAPTER 3

Feedback

You can help shape the product we release by trying out the code and leaving your feedback.

Reporting bugs

If you think you’ve found a bug, please leave us feedback. To help us fix the bug a log might be helpful. You can get
a log by setting the environment variable MQLIGHT_PYTHON_LOG to debug and by collecting the output that goes
to stderr when you run your application.

13

https://developer.ibm.com/community/groups/service/html/communityview?communityUuid=00a6a6d0-9601-44cb-a2a2-b0b26811790a
https://developer.ibm.com/community/groups/service/html/communityview?communityUuid=00a6a6d0-9601-44cb-a2a2-b0b26811790a

MQ Light Documentation, Release 1.0.2016120100

14 Chapter 3. Feedback

CHAPTER 4

Release notes

1.0.2016120100

• AMQPS (TLS) support

• Support for both Python 2 and 3

• Various performance improvements

• Improved compatibility

1.0.2015020201b1

• Initial beta release.

15

MQ Light Documentation, Release 1.0.2016120100

16 Chapter 4. Release notes

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

MQ Light Documentation, Release 1.0.2016120100

18 Chapter 5. Indices and tables

Python Module Index

m
mqlight, 3

19

MQ Light Documentation, Release 1.0.2016120100

20 Python Module Index

Index

C
Client (class in mqlight), 3

G
get_id() (mqlight.Client method), 4
get_service() (mqlight.Client method), 4
get_state() (mqlight.Client method), 4

I
InvalidArgumentError, 7
is_stopped() (mqlight.Client method), 4

M
mqlight (module), 3

N
NetworkError, 7

R
RangeError, 7
ReplacedError, 7

S
Sample

Receiver, 9
Sender, 10
UIWorkout, 11

SecurityError, 7
send() (mqlight.Client method), 4
start() (mqlight.Client method), 5
state (mqlight.Client attribute), 5
stop() (mqlight.Client method), 5
StoppedError, 7
subscribe() (mqlight.Client method), 6
SubscribedError, 7

U
unsubscribe() (mqlight.Client method), 7
UnsubscribedError, 8

21

	MQ Light Client API
	Samples
	Feedback
	Reporting bugs

	Release notes
	1.0.2016120100
	1.0.2015020201b1

	Indices and tables
	Python Module Index

